

FAQs Frequently asked questions

Tips & Tricks for TIGER Drylac[®] Powder Coating

Tips & Tricks for TIGER Drylac® Powder Coating

Dear valued Clients,

The technology of powder coating in terms of application as well as the actual paints has seen rapid advancements, a development that requires experience and knowledge to keep on pace. This knowledge has become an essential "commodity" within the company. In the future, "knowledge" as a coefficient of productivity inherent in every product, service and the structures and processes of the company, will surpass the significance of "work" and "capital", the traditional factors in productivity.

Having to apply knowledge accumulated throughout the years, experiences gathered and effects of learning curves has become a new and sophisticated challenge for businesses. Against the backdrop of intensive regional and global competitive structures in the field of industrial surface finishing, employees with their expert knowledge of their particular coating system and the special features of a broad range of different paint systems represent a crucial competitive edge.

Thus, this manual entitled "Tips & Tricks for TIGER Drylac[®] Powder Coating" represents of our efforts to catalog the treasure trove of experiences we gathered throughout the years in the field of Powder Coating Technology and make it available to you in condensed form.

It includes many of the potential causes for errors for coaters working on the system as well as the multitude of detailed questions - from A like Application to Z like Zinc.

We believe this manual provides valuable support for your production process and project planning and look forward to continuing our cooperation as partners.

Your TIGER team

Table of contents

1. 1.1 1.2 1.3	Pretreatment as a cause for errors Chromating of aluminum, zinc and magnesium Chromium-free pretreatment for aluminum and magnesium Phosphate-coating steel and galvanized steel	4 5 6
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	Application process Inadequate fluidization Sintering in injectors, hoses and spray guns Powder coating trickling off the part Insufficient wrap-around Clumping in carton Powder cloud pulsing, stops intermittently Insufficient ability to penetrate faraday areas	8 8 9 10 11 12 12 13
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 	Surface imperfections Powder splotches on workpieces Craters Pinholes Picture Frame Effect Bumps, inclusions (other colors), impurities Blisters Formation of drops and beads Orange peel, poor flow Malfunction in wetting Formation of bubbles	14 14 16 18 19 20 22 23 24 24 24 25
4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Deviations in the surface of the powder-coating film Deviations in shade Clouding Lack of covering power Deviations in gloss rate Yellowing, discoloration Layer thickness too high Layer thickness too low Layer thickness distribution uneven Waxy coatings on surface	26 26 27 28 28 29 30 30 30 30 31 32
5. 1 5.2 5.3	Deficiencies in mechanical properties and chemical resistance Inadequate mechanical properties and chemical resistance Chipping of paint film Inadequate scratch resistance	33 33 33 35
6. 6.1 6.2 6.3	Special features with applications that include reclaiming Contaminations on paint surface (addition to section 3.5) Poor processing properties Continuous changes in shade	36 36 36 37
7. 7.1 7.2 7.3 7.4 7.5	Peculiarities with applications that include metallic powder coatings Deviations in shade from color chart or master sample Fluctuations in shade during the coating process Clouding and streak formation Charging problems Processing guidelines for powder coatings with metallic effect	38 38 39 39 40 41
8.	Glossary	43

1. Pretreatment as a cause for errors

TIGER Coatings does not produce pretreatment chemicals. Consequently, the following explanations for pretreatment of the most common substrates are intended to provide a brief overview of potential causes for errors. It goes without saying that this topic has to be addressed in a more thorough and differentiated way. However, the principle below applies every time: The best and most expensive powder coating cannot make up for sound pretreatment!

1.1 Chromating of aluminum, zinc and magnesium

Fault Profile	Potential Causes	Elimination Experiments Measures
 Rinse water beading Substrate not completely wet 	• Inadequate degreasing effect <i>Fig. 1.1.1</i>	 Increase temperature of degreasing bath Increase concentration of degreasing agent Extend process times Increase spraying action or circulation speed in immersion bath Wetting check with distilled water
• Conversion layer (chromating) uneven or spotty Fig. 1.1.2	 Degreasing effect not adequate 	 Increase temperature in degreasing zone Increase chemical concentrations Extend exposure times Increase mech. spray action or circulation in immersion bath
	• Oxide layers not removed completely	 Check pickling solution Increase concentration of acid or lye, if applicable Increase temperatures of baths Extend exposure time
	 Drying between individual baths 	 Reduce transfer times in immersion systems Risers and spray nozzles
	• Delay of pretreatment	 Change suspension Avoid stopping the conveyor
• Conversion layer (chromating) not firmly	• Composition of bath not in order	 Correct composition of bath Possibly a new batch
adhering and/or cannot be wiped of	• Exposure time too long	Reduce treatment time
	 Rinsing baths excessively loaded 	 Increase dripping time between baths Increase rinse water volume
	• Spray action not adequate	 Increase mechanical impact (Poor impengment – increase pressure) Increased circulation in immersion baths Increase rinse times

Fig. 1.1.1 Poor (no) chromating

Fig. 1.1.3 Potential transfer of pretreatment media

1.2 Chromium-free pretreatment for aluminum and magnesium

Fault Profile	Potential Causes	Elimination Experiments Measures
 Rinse water beading – (poor water break) Substrate not completely wet 	 Inadequate degreasing effect 	 Increase temperature of degreasing bath Increase concentration of degreasing agent Extend process times Increase spraying action or circulation speed in immersion bath
 Powder-coating film detaches during boiling water test. Powder-coating film detaches from substrate when exposed to humidity. 	• Degreasing effect not adequate	• Improve degreasing process
Generally poor mechanical adhesion of the paint film	• Pickle rate not adequate	• Ensure higher pickle rate
	• Conversion layer not thick enough and revealed selectively only Fig. 1.1.4	 Check the entire pretreatment Degreasing Pickling Processing times
	• Conversion layer too thick and therefore brittle <i>Fig. 1.1.5</i>	• Determine thickness of conversion layer as exactly as possible (photometric methods / x-ray fluorescence analysis)

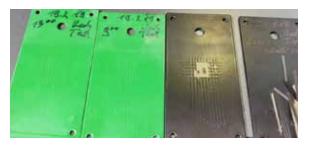


Fig. 1.1.4 Conversion layer not thick enough.

1.3 Phosphate-coating steel and galvanized steel

Fault Profile	Potential Causes	Elimination Experiments Measures
• Conversion layer (phosphate-coating) not	• Temperature of degreasing bath too low	Increase temperature
continuous Uneven or spotty Rinse water is beading and not completely wetting the surface 	 Retention time in degreasing system too short 	Increase retention time
	Fig. 1.3.1	
	Degreasing effect not strong enough	Addition of degreasing boosters
	Fig. 1.3.2	
	• Floating grease	Skimming grease, if necessary
	• Degreasing bath depleted	• Prepare a new bath
	 Degreasing chemicals not suitable 	• Use of a more suitable degreasing system, if necessary
	Fig. 1.3.3	
	• Plant-related errors	 Check nozzle alignment and correct, if necessary Clean clogged nozzles Optimize part orientations Improve position of surfaces Ensure downtimes between baths are reduced Inadequate drying
Conversion layer	• Treatment times too long	Adjust treatment times
 Conversion layer (phosphate-coating) too thick Dusty film 	Accelerator volume too high	Comply with specified bath composition
Corrosion on substrate	Conveyor standstill Chemicals become tacky	
Fig. 1.3.5; 1.3.6; 1.3.7		

Fig. 1.3.1 Grease residues after pretreatment

Fig. 1.3.2 Deep-drawing lubricants resistant to pretreatment

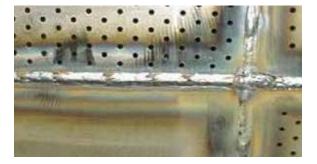


Fig. 1.3.3 Carbon due to welding work

Fig. 1.3.5 Corrosion due to Fe-phosphate coating on sandblasted workpieces

Fig. 1.3.4 Poor rinsing, subsequently stored wet

Fig. 1.3.6 Corrosion of sandblasted workpieces after pretreatment

Fig. 1.3.7 Potential transfer of pretreatment media

2. Application process

2.1 Inadequate fluidization

Powder in fluidization hopper - simmer Insufficient fluidization can be recognized by a sluggish and discontinuous transfer of the powder coating from the reservoir to the spray guns; there is no formation of an even powder cloud. Surging & spitting of powder

Fault Profile	Potential Causes	Elimination Experiments Measures
• Powder coating is not	Not enough fluidization air	• Air volume increase
"flowing" in the reservoir	• Fluidized bed defective	Replace fluidized bed
Fig. 2.1.1	• Fluidized bed clogged	• Clean fluidized
• Formation of small craters in the reservoir	 Powder too fine (reclaiming) High overspray ratio 	 Add fresh powder Replace powder coating, if necessary
Fig. 2.1.2	Moisture in powder	• Store powder dry and at room temperature
• Uneven powder cloud	• Powder coating heavily compacted already in carton	 Screen the powder coating Do not keep box vibrators working in continuous operation
	• Ambient temperatures in coating plant too high	 Aerate Cool down Structural measures, if necessary
	 Powder coating ground too finely 	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)
	• No or not enough fluid additive in powder coating	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)

Fig. 2.1.1 Fluidization - powder must flow like water

Fig. 2.1.3 Poor fluidization; powder volume too large

Fig. 2.1.2 Poor fluidization

2.2 Sintering in injectors, hoses and spray guns

Fault Profile	Potential Causes	Elimination Experiments Measures
• Powder coating sintering in injectors, hoses and spray guns	• Conveying air too high Fig. 2.2.1	Reduce pressure
 Sintering dislodge and result in contamination of the powder coating 	• Moisture present in air supply – water, oil	• Check cryogenic dryer and air filter
	 Inefficient routing of hose, tight radii 	• Optimize routing of hose
	• Fine particle ratio of powder coating too high Fig. 2.2.2	 Reclaim ratio suggested – 70% virgin 30% reclaim Contact TIGER Coatings about grinding, if necessary (customer- service@tiger-coatings.com) Check screen analysis
	 Material not suitable for catch nozzles (glass, polyamide) 	• Use catch nozzles made of Teflon, if possible
	• Catch nozzles ground out, therefore increased air pressure required	Replace catch nozzles
	• Unsuitable hose material <i>Fig. 2.2.3</i>	 Contact plant manufacturer Adjust material and diameter of hose
	Unsuitable hose diameter	
	 Room temperatures and atmospheric humidity in coating plant too high 	 Cool, dehumidify ambient temperature Structural measures, if necessary
	 Powder coating does not include an adequate volume of fluid additive and/or unsuitable fluid additive 	 Contact TIGER Coatings (customer- service@tiger-coatings.com) Add suitable fluid additive to the mixture, if necessary

Fig. 2.2.1 Sintering on flat spray nozzle

Fig. 2.2.2 Sintering on impact mill

Fig. 2.2.5 Unsuitable hose material

2.3 Powder coating trickling off the part

Fault Profile	Potential Causes	Elimination Experiments Measures
 Powder coating fails to separate or adequately separate from the part 	• No or insufficient grounding <i>Fig. 2.3.3, 2.3.4</i>	 Measure electrical resistance between part and ground/mass Improve grounding, if necessary
 Powder coating trickling off the part Complete powder layer or a part thereof slides off the 	• Voltage too low or interrupted	• Spray gun (cascade), high voltage, check cable
<i>part</i>	 Particle size distribution, powder coating too fine 	 Regular addition of fresh powder coating, if necessary contact powder manufacturer regarding grinding
	• Particle size distribution, powder coating too coarse	• Contact powder manufacturer regarding particle size
	 Severe vibrations during transport of powder-coated parts 	 Make sure that there is as little vibration as possible while the workpieces are transported
	• Layer thickness too high	Reduce layer thickness
	Fig. 2.3.5	
	 Conveying and secondary air resulting in blow-off effects 	• Reduction of air volumes
	 Powder output per spray gun too high 	• Reduce powder volume
	 Not enough space between spray gun and workpiece Blow-off effects 	• Increase space
	• Faraday areas	 Optimize suspension and positioning, if possible Change design

Fig. 2.3.1 Parts of the powder layer slip off



Fig. 2.3.2 Powder layer slips off entirely

Fig. 2.3.3 No grounding or inefficient grounding

Fig. 2.3.4 Experiment with additional grounding

Fig. 2.3.5 Powder layer too thick

2.4 Insufficient wrap-around

Fault Profile	Potential Causes	Elimination Experiments Measures
• Absence of powder on the rear in case of one-sided	 Powder output too low or too high 	Optimize powder output
spray gun arrangement	 Insufficient grounding of workpiece 	Check grounding and optimize, if necessary
	 Spray gun air too high or too low 	 Select air setting as per spray gun manufacturer's specifications
	 Particle size of powder coating not suitable 	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)
	• Spray gun voltage too low	• Increase voltage
	 Insufficient charge of powder coating 	• Optimize current and voltage settings
	• Incorrect positioning of workpieces	 Optimize positioning of workpieces, if possible
	• Spray gun defective	Maintenance service, contact spray gun manufacturer

Fig. 2.4.1 Incorrect positioning of workpieces

Fig. 2.4.2 Incorrect positioning of workpieces

2.5 Clumping in carton

Fault Profile	Potential Causes	Elimination Experiments Measures
• Clumping of powder coating in carton Fig. 2.5.1	 Improper storage Ambient temperatures in storage area too high Product stored too long 	 Ensure that storage conditions are suitable Screen powder coating prior to processing Perform requalification checks (checking flow and mechanical properties)
	Moisture in powder coating	• Ensure dry transport and storage conditions
	 Extended transport Ambient temperatures during transport too high 	 Screen prior to use Perform requalification checks If necessary, contact TIGER Coatings (customer-service@tiger-coatings.com)
	 Powder coating ground too finely 	Contact powder manufacturer
	• No or not enough fluid additive in powder coating	Contact powder manufacturer

Fig. 2.5.1 Clumping in carton

2.6 Powder cloud pulsing, stops intermittently

Fault Profile	Potential Causes	Elimination Experiments Measures
Powder cloud pulsing, stops intermittently	Inadequate fluidization	• See 2.1
intermittently	 Great hose lengths Angular hose routing Tight hose radii 	 Hose lengths as short as possible Great radii when routing hoses Adjust hose diameter
	 Catch nozzles of injector frayed 	Renew catch nozzles
	 Powder pumps / Dense- phase conveying technology 	 Perform service, contact device manufacturer

2.7 Insufficient ability to penetrate faraday areas

Despite the physical conditions (Faraday cage, ionized air), a particular minimum thickness must be achieved in corners and cavities for the most part. Poor penetration behavior is demonstrated by falling far short of possible powder penetration depths.

Fault Profile	Potential Causes	Elimination Experiments Measures
 Powder coating is poorly penetrating corners and cavities 	 Conveying air speeds too high resulting in blow-off effects 	Reduction of air speeds
Fig. 2.7.1	 Excessively high powder output per spray gun 	 Reduction of powder output
	 Powder output per spray gun too low 	 Increase of gun output
	 Spray gun nozzles not suitable 	 Improved results mostly with flat spray nozzles
	 Insufficient charge of powder coating 	 Increase current and voltage setting Check the gun
	 Voltage and current too high 	• Reduction of current and voltage settings
	• Faraday cage effect	• Use of triboelectric spray gun eliminates Faraday cage effect; insert corona spray gun
	Fig. 2.7.2	deeper into the cavity

 Grounding of workpieces not adequate 	Check grounding, optimize if necessary
 Particle size of powder coating not suitable 	 Conduct experiments with more coarse or finer grinding Contact TIGER Coatings (customer-service@tiger-coatings.com)
 Space between spray gun and workpiece too small or too large 	• Optimize spacing
 Ionized (charged) air in cavities 	 Use of ion conductors Test Supercorona, Coronastar

Fig. 2.7.1 Powder coating is poorly penetrating corners and cavities

Fig 2.7.2 Faraday cage effect

3. Surface imperfections

3.1 Powder splotches on workpieces

Fault Profile	Potential Causes	Elimination Experiments Measures
• Powder splotches are small	Poor fluidization	• See 2.1
powder accumulations on workpieces that when cured appear as hill-shaped bumps	 Powder hose too long Diameter too large Possibly Powder sedimentation in tight hose radii – (impact fusion) 	 Optimize hose diameter Shorten hose Structural measures
	 Powder coating too fine due to reclaim operation 	Add fresh powder coating
	• Uneven powder delivery	Check compressed air for fluctuations
	• Sintering in hose, spray gun, nozzles <i>Fig. 3.1.2</i>	• See 2.2
		Strip the point off goods corriers
	 Powder dropping off the goods carrier and/or conveyor 	 Strip the paint off goods carriers (suspensions) and/or clean them Check grounding

1	1
 Powder dropping off the spray gun nozzles 	Increase nebulizer and/or rinsing airClean nozzles regularly
Fig. 3.1.3	
 Powder dropping off other workpieces 	• Check grounding
Catch nozzle frayed	 Check catch nozzles (order test mandrels from spray gun manufacturer) Replace catch nozzles, if necessary
Spray gun nozzle defective	• Check nozzle • Renew, if necessary
• Damp powder coating	• Ensure that powder is dry, store in dry location
Metallic pigment splotches	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)
Fig. 3.1.1	
• Airborne particulates, dust in the coating hall	 Ensure cleanliness Turbulence caused by draft, fork lifts, etc.

Fig. 3.1.1 Metallic pigment splotches

Fig. 3.1.2 Sintering in the spray gun

Fig. 3.1.3 Powder splotches due to deposits on spray guns

3.2 Craters

Fault Profile	Potential Causes	Elimination Experiments Measures
• Crater-shaped depressions up to several mm in	 Insufficient pretreatment, e.g. grease and oil residues 	 Check pretreatment Contact chemical supplier, if necessary
diameter • Some of them extend down to the substrate	Chemical residues Pretreatment NOK	 Check pretreatment Contact chemical supplier, if necessary
Fig. 3.2.1	 Corrosion residues Rust, white rust on workpieces 	 Ensure that surfaces are free of corrosion Grind or blast, if necessary
	Fig. 3.2.2, 3.2.3, 3.2.4	
	• Oil in compressed air	• Check compressed air filter and cryogenic dryer
	Silicone, welding spaysGreasy hand cream	• Avoid using such substances in the entire coating area
	Fig. 3.2.5, 3.2.6	
	 Incompatibility with other powder coatings, such as acrylate powder coating 	 Clean coating plant thoroughly Check compatibility with other powder coatings in advance by adding small volumes
	 Outgassing from workpiece (casting materials, zinc layers) 	 Use of powder coatings optimized for outgassing Addition of outgassing additives Tempering workpieces Hot coating, if necessary
	• Ambient air contaminated, e.g. from welding sprays	Check plant for contaminated materials and remove them
	Workpiece still damp	• Optimize the time and temperature for drying
	• Wet paint and powder coatings in the same plant	 Check compatibility of individual paints Process them at different times, if necessary Structural changes in the plant
	• Applying a coat on putty	 Thoroughly dry putty Temper, if necessary Check that putty is suitable
	• Applying coats to surfaces painted with wet paints	• Check that wet-paint coats are suitable for applying powder coatings
	• Substrate was cleaned with slow-acting volatile solvents	Allow to dryTemper, if necessary

• Substrates sandblasted too coarsely <i>Fig. 3.2.7</i>	 Use finer blasting material Measure peak-to-valley surface roughness - profile
• Spray-back effects, dielectric breakdowns	 Reduce current and voltage settings Check grounding Use ion conductor systems (Supercorona, Coronastar), if necessary Check use of triboelectric spray guns
• Craters in case of rough- texture powder coatings	 Increase layer thickness Contact TIGER Coatings (customer-service@ tiger-coatings.com)
• Craters on hot-dipped galvanized parts	 Use AGF powder coatings Tempering Zinc layer too thick
• Defect in substrate	• Fill with putty
Fig. 3.2.8, 3.2.9	

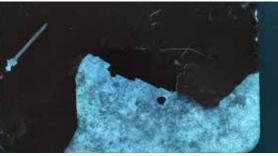


Fig. 3.2.1

Fig. 3.2.3 Rust on workpieces

Fig. 3.2.5 Fingerprint under a clear coat

Fig. 3.2.2 White rust on workpieces

Fig. 3.2.4 Craters in powder coating film due to corrosion

Fig. 3.2.6 Fingerprint with hand cream

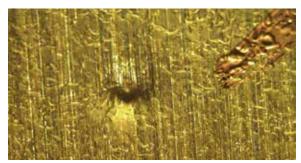


Fig. 3.2.7 Poor rinsing sandblasted, e-coat as base

Fig. 3.2.8 Defect in substrate

Fig. 3.2.9

3.3 Pinholes

Fault Profile	Potential Causes	Elimination Experiments Measures
• Pinhole-shaped pores, up to 1 mm in diameter	• Excessively high powder coating layers, especially with primide-curing polyester powder coatings due to poly-condensation	Reduce layer thickness
	Object temperatures too high when curing	 Avoid object temperatures >200°C
	• Highly porous workpieces	 Ensure workpieces are perfect (cast) Avoid excessive peak-to-valley surface roughness (pretreatment of surface with sandblasting)
	• Outgassing from porous substrates (cast components)	 Use powder coatings optimized for outgassing Add outgassing additive Tempering Hot coating
	 With rough-texture powder coatings only pinholes and craters instead of formation of texture 	Increase layer thickness
	• Lack of compatibility between powder coatings	 Clean plant thoroughly Contact powder coating supplier, if necessary
	• Pre-reacted powder coatings	 Observe the defaults regarding duration and temperature of storage Perform requalification check, if necessary
	• Moisture content of powder too high	 Store in dry conditions Avoid switching between extremely cold and warm temperatures

3.4 Picture Frame Effect

Fault Profile	Potential Causes	Elimination Experiments Measures
• Greater powder-coating layer thickness at the edge	 Powder wrap-around from opposite side 	 Reduce layer thickness on secondary exposed surfaces
of the workpiece, resulting in unevenly smooth flow	 Voltage setting too high 	• Try reducing it to 30-50 kV
and in visible differences between surface and edge area	• Current setting too high	 Try reducing it to 5-10 μA Use ion conductor systems (Coronastar, Supercorona), if necessary
Fig. 3.4.1, 3.4.2, 3.4.3	 Space between spray gun and workpiece too large or too small 	• Reduce, optimize spacing
	 Particle size of powder coating too rough and/or not ideal for application 	Contact powder coating manufacturer
	• On occasion with the use of ion conductors (Supercorona, Coronastar)	• Try removing ion conductors

Fig. 3.4.1

Fig. 3.4.2

0 .

Fig. 3.4.3

3.5 Bumps, inclusions (other colors), impurities

Fault Profile	Potential Causes	Elimination Experiments Measures
Contamination embedded in the	 Impurities from conveyor, transport chain, etc. 	 Thorough cleaning of plant, possibly "roofing" individual goods carriers
powder-coating film	 Contamination of paint surface from dirt raised outside the coating booth (room air, floor, grinding jobs, blasting plant, etc.) 	 Shield/encase coating booth Avoid high air speeds in hall Avoid tasks that generate dirt (grinding, blasting) in coating hall
	Fig. 3.5.1	
	• Fibers, lint from cleaning rags and work clothing	• Use cleaning rags and work clothing that are lint-free
	Fig. 3.5.2	
	 Pre-reacted powder coating Powder pinholes Extruder pinholes 	 Screen, if necessary Use new carton Contact powder coating manufacturer
	Fig. 3.5.3	
	 Inadequately finished weld seams Metal shavings, beads of weld metal, aluminum die pick-ups, rolling defects 	 Check production process Improve grinding or cleaning process, if necessary
	Fig. 3.5.4	
	 Input of dirt when cleaning the plant 	• When cleaning the booth with compressed air, powder coating should not be dispersed in the hall
	• Blow-off effects from workpiece at furnace opening resulting in contamination of differently colored workpieces	 Reduction of air speeds in the area of the furnace entry Separate the area of the furnace entry, if necessary Pre-gelling zone
	 Sintering of powder particles and dust when removing the workpieces from the furnace while they are still hot 	• Create dust-free conditions in the removal area
	 Transfer of powder dust when coating booths are situated in close proximity 	 Check suction capacity of booths, clean carefully Separate spaces, if necessary
	Fig. 3.5.5	
	Contaminations when storing the powder coating	 Ensure proper storage Always close powder bags Close cartons, store by type
	Fig. 3.5.6	

 Inadequately cleaned spray guns and hoses (especially problematic with rough-texture powder coatings) 	 Thorough cleaning Use different hoses for different shades, if necessary
• Dirt particles from curing furnace	 Clean oven from time to time Check use of dirt absorption films
Pretreatment residues	Ensure perfect pretreatment
• Gel particles in powder coating	 Contact TIGER Coatings (customer-service@tiger-coatings.com)
Rust particles in powder coating	Lack of pretreatment
• Deficient hot-dip galvanizing	• Ensure improved quality, clean zinc-coating
Fig. 3.5.8	

Fig. 3.5.1 Contamination of paint surface from grinding jobs

Fig. 3.5.3 Powder pinholes

Fig. 3.5.5 Transfer of powder dust - situated too closely together

Fig. 3.5.2 Fibers, lint from cleaning rags and work clothing

Fig. 3.5.4 Shavings in coat

Fig. 3.5.6 Contamination when storing powder coating

Fig. 3.5.7 Gel particles in powder coating

Fig. 3.5.8. Deficient hot-dip galvanizing

3.6 Blisters

Fault Profile	Potential Causes	Elimination Experiments Measures
 Blisters of varying sizes on the painted surface 	Remnants of water on the workpiece	 Optimize the time and temperature for drying Modify suspension of parts, if necessary
	Water in scooping workpieces	 Change suspension Drill holes for drainage Optimize drying
	 Corrosion, grease and oil residues 	Optimize pretreatment
	• Top-coating	• Ensure perfect substrate
	 Placing a top-coat on wet paint layers 	 Check suitability of wet paint layer for applying powder coating
	• Applying a coat on putty	 Drying or tempering of putty Check that putty is suitable for powder coating
	 Salt residues or remnants of chemicals Malfunction in wetting 	 Check pretreatment Avoid chain stoppages in pretreatment Ensure adequate rinsing
	 Very high layer thickness, e.g. due to powder having trickled off in corner s of workpiece 	 Check application settings Carefully blow any powder coating that trickled off out of the corners
	 Outgassing from substrate material (casting materials, zinc layers) 	 Tempering Addition of outgassing additives (AGA)

3.7 Formation of drops and beads

Fault Profile	Potential Causes	Elimination Experiments Measures
• Heavy formation of beads or even drops on the workpiece	• Layer thickness too high	Reduce layer thickness
	 Heat-up rate of workpieces extremely fast or very slow (effect depends on reactivity and viscosity of powder coating) 	 Optimize oven settings Contact powder coating supplier, if necessary
	 Unsuitable powder coating (viscosity and/or reactivity too low) 	 Contact TIGER Coatings (customer-service@tiger-coatings.com)
	• Powder coating accumulations in corners due to powder that trickled off <i>Fig. 3.7.2</i>	• Optimize application (grounding, charge, spray-gun air)
	 Workpiece temperatures too high during coating, therefore layer thickness that is too high 	 Allow workpieces to cool off below 40°C When using hot-coating, apply powder coating sparingly
	 Powder coating accumulations at the border and edges 	• See 3.4 Picture-frame effect

Fig. 3.7.1 Layer thickness too high

Fig. 3.7.2 Powder-coating accumulation in corners due to powder that trickled off

3.8 Orange peel, poor flow

Fault Profile	Potential Causes	Elimination Experiments Measures
 Poor flow Uneven surface Orange peel-like surface 	 Work pieces heating up too slowly 	 Determine heat-up rate of workpieces by means of measuring object temperature Adjust furnace temperatures
	 Highly reactive powder coatings - powder coating in liquid phase very briefly 	 Lower curing temperatures If necessary, contact TIGER Coatings (customer-service@tiger-coatings.com)
	 Back-spray effects / dielectric breakdowns (charging the powder coating too much will result in dielectric breakdowns) 	 Reduce voltage and/or electric charge (μA) Increase distance between workpiece and spray gun Check use of ion conductors (Supercorona/ Coronastar)
	• Layer thickness too high or too low	• Keep layer thickness within the range of 60- 120µm, if possible
	 Powder coating pre-reacted, is over-stocked 	 Check powder coating at usual layer thickness and curing conditions Reject, if necessary
	Particle size not suitable	 Contact TIGER Coatings (customer-service@tiger-coatings.com)
	• Textured surfaces of workpieces; the flow is predetermined by the substrate surface	Pay attention of workpiece surface

3.9 Malfunction in wetting

Fault Profile	Potential Causes	Elimination Experiments Measures
• Large areas of discontinuity that fail to exhibit a paint film	 Gummy oil, grease or release agent Insoluble drawing agents 	 Check pretreatment Optimize pretreatment, if necessary Using other drawing agents
Fig. 3.8.1	Pretreatment residues	• Ensure adequate rinsing
	 Displaced oil/grease in pretreatment 	 Check and/or optimize pretreatment and oil separation
	 Charging problems or powder coating discharged too quickly If the powder coating is not charged enough, it will not adhere sufficiently to the work pieces If the powder coating is discharged too rapidly, it will lose its capacity for adhesion after some time 	 Check grounding, increase current and voltage settings Contact powder coating supplier, if necessary

• Contamination of workpieces due to hand sweat, contaminated gloves, hand cream, etc. <i>Fig. 3.8.2</i>	• Do not touch pretreated workpieces with your bare hands or contaminated gloves
• Dried workpieces in pretreatment	• Avoid chain standstill

Fig. 3.8.1 Large areas of discontinuity that fail to exhibit a paint film

Fig. 3.8.2 Contamination due to hand sweat, hand cream, ...

Fault Profile	Potential Causes	Elimination Experiments Measures
• bubbling powder layer coming to a boil	 Layer thickness too high, >120µm for the most part 	 Reduction of layer thickness
 In practice, only primide- curing polyester powder coatings are affected 	Accumulation of powder coating trickled off in workpieces	 Ensure proper charge Parts should be transported with as little vibration as possible Suction powder accumulations carefully, of necessary
	• Excessively high object temperatures during the curing process	 Avoid object temperatures >200°C when bubbling occurs
	Parts to be coated heat up extremely quickly	Adjust curing conditions

3.10 Formation of bubbles

4. Deviations in the surface of the powder-coating film

4.1 Deviations in shade

Fault Profile	Potential Causes	Elimination Experiments Measures
 Continuous or sudden changes in shade compared to master samples or the 	• Considerable fluctuation in layer thickness	• Ensure that layer thickness is as even as possible
start of the coating process	Fig. 4.1.1	
	 Overcuring of powder coating, especially of paints with organic pigments (bright red, orange, yellow and violet shades) 	 Avoid object curing temperatures >200°C and retention times in the furnace Comply with the defaults of TIGER Coatings
	• Different curing conditions with identical workpieces	 Ensure that the curing conditions are the same Avoid conveyor standstill
	 Fluctuations in shades due to furnace technology (gas oven with direct/indirect heat, infrared ovens, forced- air ovens) 	 Use suitable powder coatings Determine deviations from shade in advance with testing
	• Paint films that are too thin and do not cover	• Comply with manufacturer data for minimum layer thickness
	Fig. 4.1.2	
	• Different curing conditions on a workpiece because the thickness of the material varies greatly	 Avoid higher recirculation air temperatures 180-190°C Ensure adequate curing by extending the retention times in the furnace
	 Different suppliers and/ or powder coating manufacturers 	 Always use paint from one manufacturer for one project
	 Inadequate of incorrect pigmentation of powder coatings 	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)
	• Different substrates and their natural colors (black steel, aluminum, brass)	• For comparison, use the same substrates
	 Pronounced rough textures (inadequate coverage of substrate in the texture's valleys) 	 Increase layer thickness Select a different type of powder coating, if necessary
	 Metamerism, deviations in shade due to different light sources (sunlight, light bulbs, fluorescent strip lights) 	• Evaluate coated parts with a defined light source (mostly daylight); otherwise it will be necessary to define the subsequent location where the parts are used and that location's light source.

• Different surfaces and reflectivity of the substrate (ground, sandblasted, chromated)	• For comparison, use the same substrates as well
 Powder delivery directly from the carton (applies only to metallic powder coatings) 	• Use fluid container

Fig. 4.1.1 Different color due to varying layer thickness

Fig. 4.1.2 Paint films that are too thin and do not cover

4.2 Clouding

Fault Profile	Potential Causes	Elimination Experiments Measures
• Unequal light to dark and/or matte to glossy impression on the workpiece	 Not enough space between spray gun and workpiece 	• Increase space
	 Sine curves of the individual spray guns fail to pass over the workpieces evenly 	 Synchronize speed of lift and chain (special calculation programs are available contact spray gun manufacturer)
	• Uneven powder delivery	 Check fluidization, lengths and routing of hose Check injector, compressed air and fluid container
	Subsequent manual coating	 Manual pre coating rather than subsequent manual coating
	• Uneven powder charge	 Check voltage and electric charge of spray guns
	 Layer thickness fluctuates significantly (especially with matte powder coatings) 	• Ensure that layer thickness is as even as possible
	 Separation resulting from reclaiming (especially with matte powder coatings) 	• Ensure consistent ratio of fresh and reclaimed powder

4.3 Lack of covering power

Fault Profile	Potential Causes	Elimination Experiments Measures
Insufficient coverage of	• Layer thickness too low	Increase layer thickness
substrate by paint layer	 Layer thickness fluctuates significantly 	• Ensure that layer thickness is as even as possible
	• Different substrates and natural colors (steel, aluminum, brass)	• Increase layer thickness until it reaches its full capacity for coverage
	 Pigmentation of powder coating not adequate or incorrect 	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)
	 Incorrect ratio of lift to chain speed (uneven distances of sine curves in automatic booths) 	 Synchronize speed of lift and chain
	• Different surfaces and reflectivity of the substrate	 Perform comparisons on identical substrates only Increase layer thickness until it reaches its full capacity for coverage, if necessary

4.4 Deviations in gloss rate

Fault Profile	Potential Causes	Elimination Experiments Measures
• Deviations and/or fluctuations from specified gloss rate	• Curing conditions that are too high or too low	Observe the manufacturer's specifications
	 Pinholes (especially with primide-curing polyester paints) 	 Observe targets for maximum layer thickness and max. curing temperatures with anodized material (compaction)
	• Layer thickness too high or too low	• Pay attention to defaults
	 Incompatibility with other powder coatings (dulling) 	Clean coating plant thoroughly
	• Gas furnaces with direct heat, infrared furnaces	 Tailor furnace conditions to powder coating Use better suited powder coating, if necessary
	 Powder coating pre-reacted and/or is overlaid 	 Check whether the powder coating still meets all requirements. Reject, if necessary
	• Unsuitable cleaning agents on paint surface	 Follow the powder-coating manufacturer's recommendations for cleaning

 Separation of 2K matte powders due to reclaiming operation 	• Forgo reclaiming, if necessary
• Sweating of paint additives (waxes, outgassing additives, etc.)	 Pay attention to furnace parameters If necessary, contact TIGER Coatings (customer-service@tiger-coatings.com)
 Powder coating insufficiently dispersed Lack of paint homogeneity 	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)

Fig. 4.4.1 Blooming effect - sweating of paint additives

4.5 Yellowing, discoloration

Fault Profile	Potential Causes	Elimination Experiments Measures
 Yellowing, discoloration 	Incorrect curing condition, mostly too high	• Comply with the defaults of TIGER Coatings
Fig. 4.5.1	 Powder coating not heat stabilized 	 Use stabilized powder coatings Contact TIGER Coatings
	 Gas furnaces with direct heat IR curing furnaces 	• Use powder coatings that are matched to these curing conditions
	• Liquid paint components, felt-tip pen, stamp colors, markers diffused into paint film	• Thoroughly remove residues prior to coating
	Fig. 4.5.1	
	• Oils, solvents in furnace	• Ensure that the curing oven is clean!

Fig. 4.5.1 Yellowing, discoloration

4.6 Layer thickness too high

Fault Profile	Potential Causes	Elimination Experiments Measures
• Layer thickness created is	• Powder output too high	Reduce powder output
too high by far	 Coating time too long 	Reduce coating time
	 Workpieces too hot during coating, powder melts on the substrate immediately 	 Avoid workpiece temperatures >40°C in booth
	• Disadvantageous shape of workpieces	 Optimize application Modify orientation of work pieces, if necessary
	 Tribo application allows for significantly higher layer thickness than Corona application 	• Be mindful of the peculiarities of the tribo application

4.7 Layer thickness too low

Fault Profile	Potential Causes	Elimination Experiments Measures
• Low layer thickness	Coating time too short	Increase coating time
 Uneven flow Poor covering power 	• Powder output too low	Increase powder output
	 Distance between spray gun and workpiece too great 	Reduce distance
	• Grounding not adequate	• Optimize grounding
	 Powder coating charge too week 	 Increase current and voltage settings Check spray guns
	 Particle size too fine (high overspray ratio, high ratio of reclaimed powder) 	 If the ratio of fine powder continues to rise, pay attention to steady addition of fresh powder Empty reservoir
	 Suction capacity/air speed in booth too high 	• Contact plant engineer
	• Disadvantageous shape of workpieces	Optimize suspension
	• Fluidization of powder coating not optimal	Improve fluidization
	 Powder hose too long, diameter too large 	• Optimize length and diameter

 Changed powder exit due to sintering in spray guns, hoses, nozzles Injector catch nozzles ground out 	 Remove sintering Check catch nozzles and renew, if necessary
 Lack of power in powder container 	 Refill powder coating Check minimum probe
• With multiple coats and/ or double coating, the first layer acts as insulation. Result: charge quantities on surface are too large	 Reduce current and high voltage settings Increase distances from spray guns to parts Check on use of an ion conductor system (Coronastar, Supercorona)

4.8 Layer thickness distribution uneven

Fault Profile	Potential Causes	Elimination Experiments Measures
• Greatly uneven layer thickness distribution on workpiece	 Disadvantageous spray gun arrangement in automatic booth or incorrect ratio of chain and lift speed 	• Determining the correct spray gun distances and also the ratio of lift and chain speeds using calculation programs (e.g. Gema, Wagner)
	• Insulating effect from initial coating	 Reduction of current and voltage settings Increase distance between spray gun and workpiece Use of ion conductor (Coronastar, Supercorona), if necessary
	 Heavily fluctuating ratio of fresh and reclaimed powder in reservoir 	 Continuous and/or steady addition of fresh powder that is adjusted to the actual powder volume needed
	• Uneven powder delivery	 Checking fluidization (see 2.1), injectors (or powder pumps), as well as routing, lengths, diameters of hoses
	 Disadvantageous shape of workpieces (cavities, Faraday cage) 	• See 2.7 (Insufficient ability to penetrate cavities)
	 Geometry of workpieces varies greatly 	• Optimize spray gun and plant settings for the workpiece

4.9 Waxy coatings on surface

Fault Profile	Potential Causes	Elimination Experiments Measures
• Waxy coatings on surface that can be wiped off	• Additives "sweat" from paint film	 Replace powder coating Use suitable powder coating Optimize curing conditions
	Powder coating not cured	Pay attention to curing conditions
	• Blooming effect, whitish coatings that can be wiped off resulting from long furnace retention times at low furnace temperatures of about 100-140°C (affects primarily colorful/dark polyester powder coatings) <i>Fig. 4.9.1</i>	• Increase of furnace temperatures
	 Insufficient air exchange in curing furnace 	Improvement of air exchange

Fig. 4.9.1 Blooming effect

5. Deficiencies in mechanical properties and chemical resistance

	Inadaqua	to mochonico	I ne no no esti o co o no d	changing	registeres
5.1	Inadequa	ate mechanica	l properties and	chemical	resistance

Fault Profile	Potential Causes	Elimination Experiments Measures
• Nonconformity with required properties with respect to mechanical characteristics and chemical resistance	• Powder coating not sufficiently cured	 Comply with the curing conditions of TIGER Coatings Determine temperature curves on the individual work pieces, if necessary Comply with data sheets
	• Unsuitable powder coating	 Request information about suitability of powder coating with respect to specific technical properties from TIGER Coatings (customer-service@tiger-coatings.com) or verify suitability on your own
	• Faulty pretreatment, unsuitable pretreatment	Check suitability and execution of pretreatment

Fig. 5.1.1 Not sufficiently resistant to cleaning agents

5.2 Chipping of paint film

Fault Profile	Potential Causes	Elimination Experiments Measures	
 Powder coating layer chipping when part is subjected to mechanical impact (blow, deformation) 	 Under-curing or heavily over-curing will downgrade the mechanical properties 	• Comply with specified curing conditions	
	Fig. 5.2.1		
	 Pretreatment unsuitable or insufficient 	 Check pretreatment Optimize, if necessary (see 1.1 and 1.2) 	
	Fig. 5.2.2		
	• Scale, flash rust, white rust, dust on the workpiece	• Remove corrosion products with mechanical means prior to coating	
	Fig. 5.2.3		

 No adhesion on laser-cut edges due to oxide film (applies only to oxygen laser, not to nitrogen laser 	 Remove oxide layers by mechanical means, if necessary Use nitrogen laser
 Powder coating properties are not tailored to the application 	 Use suitable powder coatings If necessary, contact TIGER Coatings (customer-service@tiger-coatings.com)
 High powder coating layers dramatically downgrade the mechanical properties 	• Keep layer thickness at <100µm, if possible
• No or poor adhesion of intermediate layer (e.g. to primer)	 Check intermediate layer adhesion between two paints in advance Sand down first layer, if necessary Especially in gas ovens with direct heat
 No adhesion of powder coating to wet paint layers (e-coat, wet paint primer) 	 Check suitability in advance Sand down, if necessary
• Break in zinc, conversion or primer layer	• Tailor pretreatment and substrate to powder coating
Contaminated workpieces	• Ensure that workpieces are clean

Fig. 5.2.1 Deteriorated mechanical properties

Fig. 5.2.3 Scale, flash rust, white rust

Fig. 5.2.2 Pretreatment unsuitable or insufficient

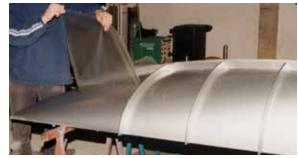


Fig. 5.2.4 No or poor inter-coat adhesion

5.3 Inadequate scratch resistance

Fault Profile	Potential Causes	Elimination Experiments Measures
• Poor resistance of paint film to scratching	 Powder coating not adequate cured 	 Comply with specified curing conditions
	 Powder coating too soft and/or sensitive to scratching 	 Use suitable powder coating Contact powder coating manufacturer
	 Packaging and/or shipping containers not suitable 	• Use suitable packaging material or shipping containers
	Fig. 5.3.1	Fig. 5.3.2
	 Incorrect and/or abrasive cleaning agents 	• Use suitable cleaning agents

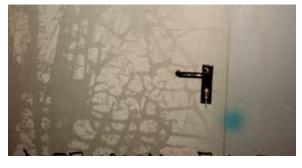


Fig. 5.3.1 Packaging material not suitable

Fig. 5.3.2 Use suitable packaging material

05-2019

6. Special features with applications that include reclaiming

6.1 Contaminations on paint surface (addition to section 3.5)

Fault Profile	Potential Causes	Elimination Experiments Measures
• Reclaiming causes contaminations of the paint surface from powder or foreign particles	• Powder remnant or dirt in coating booth, the cyclone separator or on the filter	• Clean plant thoroughly
	 Powder remnant in application devices Powder sintering from injector, hose or spray gun 	 Clean application devices thoroughly Several hoses for different shades, if necessary
	• End filter defective, powder is blown into the room	• Check end filter
	• Potential transfer of powder from one booth to another <i>Fig. 6.1.2</i>	 Clean booths carefully and without excessively high air pressure If necessary, separate booths by using structural means

Fig. 6.1.1 Powder remnant or dirt in coating booth

Fig. 6.1.2 Potential transfer of powder from one booth to another – cross contamination

6.2 Poor processing properties

Fault Profile	Potential Causes	Elimination Experiments Measures
• Continually or suddenly deteriorating ability to process the powder coating	• Changes in particle size due to reclaiming	 Optimize cyclone settings Ensure that the ratio of fresh and reclaimed powder remains consistent Make sure to avoid overspray (hanging tightly, no gaps) Ensure even removal of overspray from booth

6.3 Continuous changes in shade

Fault Profile	Potential Causes	Elimination Experiments Measures
• Continuous or sudden changes in shade compared to master samples or the start of the coating process	 Separation and/or changes in particle size due to reclaim operation 	• Ensure that the ratio of fresh and reclaimed powder remains consistent
	• Powder remnant in the plant	 Clean booth thoroughly before start-up of new production
	• When delivering the powder from the box, consistent mixing of fresh and reclaimed powder is not ensured	• Use fluid container
	 Powder transfer from one booth to another due to different suction systems 	• Ensure structural separation
	 Reclaimed powder is not added consistently 	• Ensure consistent ratio of fresh and reclaimed powder

7. Peculiarities with applications that include metallic powder coatings

7.1 Deviations in shade from color chart or master sample

Fault Profile	Potential Causes	Elimination Experiments Measures
• Result of coating not identical to original or to sample of color/effect	 Some of the different application techniques (tribo, corona application or use of ion conductor systems greatly impact the shade/effect 	 Always use the same application technology for long-term projects and coatings related to an object Always compare to the original (regularly)
	 Different current, voltage, air settings and distances between spray gun and work piece that vary greatly 	 Always use the identical application parameters for long-term projects and coatings related to an object
	• Fluctuations in powder coating batch <i>Fig. 7.1.1</i>	 If possible, use only one batch for object- related orders Contact TIGER Coatings (customer-service@ tiger-coatings.com)
	• Defective spray guns	• Check the spray guns for current and voltage
	Inadequate grounding	Ensure consistently sound grounding
	• Color sample or color chart fails to match the powder coating used from the outset	• Use only samples that were actually produced from the powder coating
	Fig. 7.1.1	
	• Layer thickness too low	• Comply with the minimum layer thickness specified by TIGER Coatings

7.1.1 Sample fails to match the powder coating from the outset

7.2 Fluctuations in shade during the coating process

Fault Profile	Potential Causes	Elimination Experiments Measures
• Creeping or sudden changes in shade or effect	• Powder delivery from box	• Use fluid container
	 Separation of base powder coating and metallic pigments during application 	 Use the same application devices Avoid high mechanical loads, high air speeds in hoses, hours-long fluidization (without powder consumption) of the powder
	• Separation of base powder coating and metallic pigments due to reclaim operation <i>Fig. 7.2.1</i>	 Ensure that there is a consistent ratio of fresh and reclaimed powder If necessary, forgo recovery in case of very stringent requirements for consistency of shade Use only very well bonded powder coatings
	Change of batches during the coating process	• Use only the same batch for closed sales orders
	Fig. 7.2.2	
	 Insufficient bonding of powder coating 	 Contact TIGER Coatings (customer-service@ tiger-coatings.com)

Fig. 7.2.1 Separation due to reclaiming

Fig. 7.2.2 Switching batches during coating process

7.3 Clouding and streak formation

Fault Profile	Potential Causes	Elimination Experiments Measures
 Light-dark deviations on work pieces 	 Spray gun distances to workpieces too short 	 Increase distances, >40cm are sufficient for the most part
Fig. 7.3.1	 Distances of the sine curves of individual spray guns uneven 	 Determining the correct spray gun distances and also the ratio of lift and chain speeds using calculation programs (e.g. Gema, Wagner)
	• Uneven powder delivery	 Check fluidization, injectors as well as lengths, routing and diameter of hose.

• Subse	equent manual coating	• With metallic powder coatings, if possible, apply only pretreatment coat manually
spray	ic charge on individual guns uneven guns may be defective	 Verification of actual quantities of current and of voltage
	ficient grounding of pieces	 Ensure consistently sound grounding of all work pieces
	ness of layers lates greatly	 Ensure compliance with minimum layer thicknesses specified
• Powd	er delivery from box	• Use fluid container
• Spray suital	gun nozzles not ble	 Mostly good results with flat-spray nozzles with very difficult metallic powder coatings Use impact disc nozzles, if necessary
too h • Powd	eeds from spray gun igh er cloud that is too and directional	 Ensure that the powder cloud is as soft and even as possible High air speeds are to be avoided

Fig. 7.3.1 Light-dark deviations on workpieces

7.4 Charging problems

Fault Profile	Potential Causes	Elimination Experiments Measures
 Powder is trickling from the workpiece or slides off the workpiece from large areas 	 Grounding not adequate, especially with particularly dry air in winter 	• Ensure consistently sound grounding
	 Powder coating is not adequately charged by the spray guns 	 Check spray guns, experiment with high current and voltage settings, remove ion conductor systems (Coronastar, Supercorona), contact powder manufacturer, if necessary
	 Powder coating "discharges" much too quickly on the workpiece and loses adhesion 	• Contact powder manufacturer

7.5 Processing guidelines for powder coatings with metallic effect

AUFLADUNG	Grundsätzlich sind nur wenige Metallic-Pulverlacke tribostatisch versprühbar. Die entsprechende Eignung muß vor der eigentlichen Verarbeitung auf der Beschichtungsanlage geprüft werden. Wegen der unterschiedlichen Aufladefähigkeit von Pulverlack und Metallicteilchen werden nicht alle Metallicpartikel zum Beschichtungs- objekt transportiert. Auch daraus kann eine Verschiebung des Farbtones/Effektes resultieren. Der Wechsel von elektrostatischer zu tribostatischer Aufladung ist nicht zulässig. Bei Metallic-Pulverlacken ist auf besondere Reinheit der Anlage zu achten, um Sinterungen und dadurch ausgelöste Kurzschlüsse im Pistolenbereich zu vermeiden. Auf die Wichtigkeit der regelmäßigen Kontrolle der Aufladung der Pulver wolke wird noch einmal hingewiesen.
ERDUNG	Bei der Anwendung von Metallic-Pulverlacken ist darauf zu achten, dass die Pulversprühanlage und das Beschichtungsobjekt ausreichend geerdet sind. Diese Maßnahme trägt wesentlich zur Konstanz der Farbton-/Ef- fekt-Bildung bei.
BESTÄNDIGKEIT	Grundsätzlich wird die Beständigkeit von der Verarbeitung – Einschicht- oder Zweischichtverfahren – bestimmt. Die Beständigkeit von Metallic-Pulverlacken ist produktabhängig und daher, bezogen auf den Anwendungs- fall vom Hersteller zu erfragen, wobei auf spezielle Anforderungen wie z.B. Abrieb und Kratzfestigkeit, Art der Reinigung, Farbtonstabilität und chemische Beständigkeit hinzuweisen ist. Eine effektive Beratung durch den Hersteller bedingt genaueste Kenntnis aller Belastungen , denen die Pulverbeschichtung im Einsatz ausgesetzt wird. Dazu zählen alle Stoffe mit denen die Beschichtung bei der Montage in Kontakt kommen wird, wie z.B. auch Einglasungshilfsmittel. Werden Stoffe eingesetzt, deren chemischer Einfluss nicht bekannt ist, sind nach Rücksprache mit dem Beschichtungsstoffhersteller Versuche durchzuführen. Im Bedarfsfall kann daher eine farblose Überbeschichtung notwendig werden, um Einflüsse, die zu einer Farbton bzw. Effektverschiebung füh- ren können von der Lackoberfläche (Metallic-Teilchen) fernzuhalten. Bei der Anwendung von 2-Schicht-Systemen sind die dafür gültigen Einbrennbedingungen zu beachten.
REINIGUNG	Die Reinigung von Metallic-Beschichtungen muss regelmäßig und ehebaldigst nach einer Verschmutzung erfol- gen. Eingetrocknete, alte Verschmutzungen sind nur abrasiv, das bedeutet unter Verletzung (Verkratzung) von der Beschichtung zu entfernen. Die Reinigungsempfehlungen des Herstellers sind in jedem Fall zu beachten.
ALLGEMEINE HINWEISE	Schwierig zu beschichtende Teile sollten vorbeschichtet werden. Ein nachträgliches Ausbessern kann zu Wol- kenbildung führen. Bei beidseitig zu beschichtenden Teilen sollte die Hauptansichtseite zuletzt beschichtet werden. Die Lage von Fassadenblechen ist vor der Beschichtung festzulegen – senkrecht oder waagrecht – und darf während des Beschichtens nicht mehr verändert werden. Unterschiedliche Aufheizgeschwindigkeiten sind zu vermeiden: Dünn- und dickwandige Teile dürfen nicht miteinander vermengt der Beschichtung zugeführt werden. Hinweise dazu im Pulverlack-Merkblatt sind zu beachten.

Der Einsatz von Metallic-Pulverlacken erfordert genaues Arbeiten. Alle Hinweise dieses Merkblattes müssen befolgt werden. Ganz besonders wichtig ist in diesem Zusammenhang der Informationsfluss zwischen Beschichter und Auftraggeber, aber auch zwischen Beschichter und Lackhersteller, damit alle Bedingungen für eine einwandfreie Beschichtung erfüllt werden.

10/2000

8. Glossary

Below is a brief explanation of the most important and common key words in the powder coating sector. Please note that these explanations are not scientific nor do they comply with the standards. Instead, they reflect the language commonly used in practice, with the focus on general understanding.

Ability to Penetrate

Ability of coating to get into corners, recesses and cavities

Abrasion resistance

Resistance of powder film to abrasive media, e.g. sand, liquid scouring cleaner, cardboard, wood, paper

Absolute Filter (superfine mesh filter) Also final filters of coating plant for superfine particles not separated by the recycling process

Accumulations

Powder that does not adhere to the workpiece and/or does not enter the powder cycle but is left behind in the booth

Additives

Additions used in powder coating manufacturers aimed at optimizing the application or the powder coating film

Adhesion

Strength (quality) of bond (mechanical anchoring and/or chemical compound) at the interface of powder coating layer and workpiece surface

Adhesive Remnants

Residues that cannot be removed by pretreatment; result in surface imperfections and problems with adhesion

Adhesive Water Dryer

Furnace (chamber) for drying the workpieces coming from wet chemical pretreatment at 70 - 130 °C

Agglomerations

Sintering of powder in the delivery system, application technology or in recycling

AGA additive

(AGA = Outgassing arm) Additive to reduce the occurrence of outgassing in the powder coating film

Anodizing

Anodic oxidation of aluminum, also referred to as anodizing; as a pretreatment of aluminum without sealing the oxide layer

Anodic Oxidation

Surface finish for aluminum, creating a (colored) aluminum oxide film and its subsequent compaction (see anodizing)

Application

Technology, spray guns, charging device, injectors, hoses, etc. directly needed for powder coating

Atomizer Air

To support the spray cloud, also to prevent sintering at Corona needle and impact disc

Automatic System

Application in conjunction with automatic spray guns (arranged in fixed positions on lifting stand or robot)

B

Binding Agent

Primary component of powder coating, resins like epoxy, polyester, PUR or acrylic

Blisters

Bumps in powder coating film caused by drops of water, salt and/ or oil residues, etc.

Blooming Effect

Formation of a white, waxy film on the powder-coated surface that can be wiped off; occurs in case of cross-linking in the lower temperature range

<u>Booths</u>

Cabinets fitted with technical equipment for coating (steel, stainless steel sheeting, plastic)

Bubbling

Outgassing of the actual powder, especially with very high layer thicknesses (starting at 150 µm; particularly TGIC-free and in IR furnaces)

Buchholz Hardness

Test procedure to determine the resistance of powder-coated surfaces to pointed loads; DIN 53 153

C

Cavities

Interior spaces that cannot be reached with powder coating (see Faraday cage), such as profile pipes, welded structures

<u>Charge</u>

Electrostatic charge of powder by means of Corona or Triboelectric charge

Chipping

Burnt-in powder flakes off the workpiece under mechanical loads (e.g. When creased, cut or milled)

<u>Chalking</u> Degradation of resin and pigments being bleached by UV light or chemicals

<u>Cleaning</u> Cleaning the plant when switching colors: a necessary evil of powder coating

<u>Clot</u> See powder splotches

<u>Clumping</u> Agglomeration of powder coating in carton due to vibration, inflow of water, Corona charge or heat

<u>Coat</u> Floating additives on powder coating film, e.g. AGA additive

<u>Color Deviation</u> Difference of the shade between original and sample (color chart to workpiece or workpiece I to workpiece II)

<u>Color</u> Sensation transmitted through the eye which is triggered by light sources and light reflexes

<u>Color Standard</u> Official color charts representing industry norms (RAL, NCS, Pantone

industry norms (RAL, NCS, Pantone, RAL-Design, Sikkens, HKS, British Standard, etc.)

Conveyor

Transport rail for transporting workpieces and suspension gear (manual sliding technology)

<u>Conveying Air</u> Required air for transporting powder coating to the spray gun, increase conveying air = increased powder volume <u>Conveying Hose</u> For transporting the powder-air-mixture from powder container to the spray gun

<u>Conveyor</u> Delivery facility for transporting workpieces through the coating plant, see also Conveyor

<u>Conveyor standstill</u> Very costly stoppage of conveyor due to potential faulty coating (plant failure)

Contamination See Dirt

Corona charge See E-Static

<u>Corona Charge</u> See Corona Charge

<u>Corrosion</u>

Reactions of a metallic material to its environment resulting in a measurable change to the material and functional impairment

<u>Cracks</u> Surface imperfection of coating; cracking as a result of insufficient cross-linking after mechanical stress

<u>Craters</u> Surface imperfection extending through the powder coating film down to the workpiece surface

<u>Cross-linking</u> Irreversible chemical reaction of thermoset plastics

<u>Curing</u> Complete cross-linking of the powder coating; process requires minimum temperature and minimum time Cyclone

Facility to return overspray in the powder cycle; always needs a final filter (See Filter)

<u>Deionized Rinse</u> Final pretreatment rinse with fully desalinated water (max. 30 µs)

D

<u>Dense-Phase Conveying</u> Method for transporting powder to the coating plant

<u>Distance I</u> Distance of spray gun to work piece

Distance II Distance between workpieces

Dissolving partially Softening the powder coating film with solvent

Dirt

Primarily contributes to a lower coating quality (dust, fibers, shavings)

Dosing Air

Supply air for controlling the powder volume in the spray gun; increase in dosing air will result in less powder coating and a less dense powder cloud

<u>Drop Formation</u> Sagging of powder coating at the bottom edges in the liquid stage

Drawing Agent Oils and grease used as lubricants when shaping (extruding, stretching) profiles

E

Edge Configuration Powder accumulation at workpiece border

Edge Deposit

Accumulation of powder coating at edge of the workpiece (see Edge deposits)

Environmental Influences Climate and environmental parameters existing in the coating room

E-Static

Electro-static charging of powder particles in the area of a Corona discharge; its high voltage is generated with a cascade in the spray gun or supplied to it via cable

F.

Faraday Cage Physical phenomenon, screening of electric fields in case of closed designs

<u>Film Thickness</u> Thickness of powder-coated film

<u>Final Filter</u> See Absolute Filter

 $\frac{Fineness}{Area of grain distribution of powder coating (< 10 <math display="inline">\mu m)$

Filiform Corrosion

Thread-like formation of metal oxides (no Al2O3) on aluminum that appear as thin, clearly defined threads under the powder coating film

<u>Film</u> Undesirable, veil-like surface coat

Filter

Used to separate the powder-air mixture (overspray) in suctioning (plate, bag or cartridge filter)

Fish Eyes See cratering

<u>Flow</u> Smoothness of powder coating film

<u>Fluid Bed</u> Air-permeable sintering material in powder reservoir; the powder turns into fluid (fluidized) as a result of inflowing air (0.3 - 0.5 bar)

Fluidization

Fluidizing powder coating in the fluid hopper or powder container using compressed air

<u>Freshwater Rinse</u> Rinse step within pretreatment for removing cleaning chemicals with tap water

Friction Charge See Tribo

G

<u>Galvanizing</u> Electrodeposition of corrosion protection layer (zinc) of approx. 5-15 µm from aqueous, acidic or alkaline zinc electrolytes

Application of a corrosion protection layer (Zn) on steel (hot-dip galvanizing, galvanizing or Sendzimir galvanizing)

<u>Gel Particles</u> Uncooked resin particles in powder coating

<u>Glass-transition temperature</u> Transition of powder coating into liquid phase

Gloss

Reflectivity of a surface, in case of powder coating glossy to flat matte

<u>Grain size and/or spectrum</u> Distribution of powder particles by size and proportion

<u>Grease Remnants</u> Residues on workpiece not removed by the pretreatment (wool grease, gummy grease, drawing lubricants, etc.)

<u>Grounding</u> Contact of workpiece and system parts with (grid) ground

<u>Ground</u> See Substrate

<u>Gumming</u> Dried-up grease and oil residues

H

<u>Heat-up Rate</u> Time needed to heat-up the object to the required temperature

<u>Heating</u> ...of adhesive water and powder dryer; direct/indirect gas and oil, electric, IR

<u>High Voltage Discharges</u> Star-shaped surface tension craters caused by inadequate grounding

Hose See Delivery Hose

Hot-Dip Galvanizing

Corrosion protection, application of zinc layer roughly 30 - 80 μ m thick, using the dipping method at about 400 °C

Immersion Pretreatment

Pretreatment of workpieces, not always suitable with pronounced scooping parts

Injector Venturi pump for powder delivery

Insulation of workpieces Inadequate grounding caused by excessively high layers on workpiece or suspension gear

Incompatibility Impairment of surface due to uncontrolled chemical reactions

Intercoat Adhesion Adhesion between first and second coat

Μ

Plant service that was never or

rarely performed on at irregular

intervals (also see Plant Service)

Powder coating suitable for the

Material selection (substrate)

Material Selection (powder coating)

intended application (exterior and/ or interior grades, effects, etc.)

Materials suitable for the intended

application (steel, aluminum, glass,

Required powder coating proper-

ties (test acc. to DIN, e.g. mandrel

bending or impact test, Erichsen

Ionization charge See E-Static

Maintenance

MDF)

Mechanical Values

cupping, etc.)

Metallic Pigments Conductive and non-conductive effect particles in powder coating

Metallic powder coatings Effect powder coatings with a surface that looks like shiny metal (pearl gloss, glitter, glimmer, etc.)

Metal shavings Processing residues on workpieces (cutting, grinding, milling, drilling, etc.)

Metamerism Effect of color science, difference in shade at various lighting scenarios

Moisture Absolute water content in powder coating

Multiple Coats Application of a second powder coating layer

Nozzles Various attachments on the spray

0

Ν

gun (impact discs, finger nozzles, round and flat spray nozzles)

Oil Carbon Burnt oil or grease on the workpiece, with welding processes "burnt-in"

Oil Remnants Residues on workpiece not removed by pretreatment

Opacity Ability of the powder to completely cover the natural shade of a substrate with a reasonable minimum

Orange Peel Waviness (short or long) on powder-coated surface

Outgassing Substrate ingredients escaping through the melting powder layer (water vapor, air, gases, etc.) and cause surface imperfections in the powder coating film

Overspray Powder coating not taken up by the workpiece during application

Oven See Powder Dryer

Oven Types

Differences in terms of design and heating, e.g. chamber furnace, continuous furnace, forced-air furnace, IR furnace (see also heating system, quality of gas)

Over-curing Excessively high object temperatures in the curing oven

Oversized Particles

Powder particles larger than the mesh size of the screen that are separated during the screening process

Oxide Layer Corrosion residues on workpiece

Paint Film Desired formation of the surface of the cross-linked powder coating

Þ

Paint Adhesion See Adhesion

Pickling Solution

Water-based cleaning method for metal removal that takes off oxide layers, rust, pressed-in contamination and foreign particles

layer thickness

Picture Frame Effect

Higher powder-coating layer thickness at the edges of the workpiece due to high field strength at edges, e.g. notable with fine-texture and metallic powder coatings

<u>Pigments</u> Chromophoric substances in powder coating

<u>Pimples</u> Bumps in powder-coated surface

<u>Pinholes</u> Surface imperfection, formation of fine pores in powder coating film

Plant Service

Necessary upkeep of the plant to be performed regularly by the manufacturer

<u>Plasticizer</u> Additives used for production of plastics

Pressure Points

Visible indentations in the powder coating film caused by excessive compressive loads, especially with high layer thickness

Pretreatment

Cleaning and conversion layer formation with wet chemical process (dipping, spraying) or with dry method, e.g. sandblasting

Propagating brush discharge High-energy discharge of plastic surfaces which carry an electrical charge may ignite powder-air mixtures.

Polishing Marks

Mechanical surface treatment; may be detected through powder coating film

Powder

In this case powder coating, dry thermosetting plastics in form of dust

<u>Powder Delivery</u> Transport of powder coating from reservoir to the spray gun

Powder Circulation Transport of powder that was not applied by way of reclaiming for reuse (see overspray)

<u>Powder Hose</u> See Delivery Hose

<u>Powder Splotches</u> Agglomerates of powder coating on powder-coated surface

<u>Powder Dryer</u> Facility needed for cross-linking and curing the powder coting film (see furnace types)

Powder Center

Compact device for delivering powder from container with integrated cleaning system

<u>Powder Remnants I</u> Contaminated powder coating from reclaiming

Powder Remnant II

Powder coating in box or warehouse that cannot be used commercially any more

Q

Quality of Gas

Gas used for heating adhesive water and powder dryer (natural gas, city gas, butane, propane); the decisive factors are thermal value and composition

<u>Reclaiming</u> Facilities for re-use of overspray

R

Release Agent

Sprays used in metal processing to reduce adhesion of sweat residues, those containing Silicon not suitable

<u>Release Agent II</u> Liquid used in casting to reduce adhesion between casting and mold

<u>Resistance</u> Consistent resistance as required, e.g. to chemicals, weather or UV light

<u>Resistance to Solvents</u> Powder coating resistance to various solvents

Retraction Effect See Wetting

<u>Return Point</u> Top and bottom return point of spray guns with lift frames

<u>Retention time</u> Time of coated workpieces in powder dryer

Rinsing

Removal of pretreatment residues using fresh or deionized water with spraying or dipping

Runs

Powder-coated film dripping over the workpiece (i.e. not purely wet-paint-specific)

Running Away

Retraction of powder layer from the edge of the workpiece, especially with workpieces having sharp edges (burr)

Rust

Corrosion products created as a result of corrosion or steel

Safety Regulations

The plant engineer and operator has to comply with domestic and European safety standards (see ZH 443 – 444, EN 50050, EN 50053, EN 50177, prEN 12891)

S

<u>Screening Analysis</u> Determination of grain distribution (see Grain Size)

<u>Screening Equipment</u> Screening the powder coating as

part of reclaiming; can also be done separately (screen mesh at least 200 µm)

Screen Tear

Damage to the screen used to screen the powder coating; it may result in oversized particles getting into the powder and cause disruptions in the flow

<u>Sensitivity to scratching</u> Resistance of powder-coated surface (see abrasion resistance)

<u>Shade</u> Designation of color, see color standard

<u>Short Circuit</u> Uncontrolled (current) contact between high voltage and ground

<u>Snowboard Effect</u> Powder fails to adhere to the workpiece: it slides off in sheets, see also trickle-off effect

<u>Sinusoidal Flow</u> Spray pattern with spray gun arrangement in lift frames influenced by conveyor and lift speed

Shavings

Fine, distracting particles from chipping and/or cutting production (metal, wood or plastic)

<u>Spikes</u> See Pinholes

<u>Splotches</u> Agglomerations of powder coating in powder coating film (see also attachment)

<u>Spray Gun</u> Charging and spraying device needed to apply the powder coating (Corona charge / Tribo)

<u>Spraying</u> Application of powder coating by means of spray guns onto workpiece

<u>Spray Scrubber System</u> Pretreatment of workpieces via spraying method (approx. 1.5 bar), mechanical cleaning effect

<u>Substrate</u> Workpiece, material to be coated (steel, aluminum, stainless steel, glass, plastic, MDF)

<u>Subsurface Corrosion</u> Formation of corrosion due to humidity and salts (osmosis) between powder coating and part

<u>Surface imperfections</u> Impairment of visual properties of the powder-coated film

<u>Suspension Gear</u> For positioning workpieces during the coating process

<u>Streak Formation</u> Uneven layer thickness with irregular sine curve

Sweeping

Sandblasting the work pieces, mechanical fine-grain removal of corrosion layers, especially from hotdip galvanized parts, max. 30 µm surface roughness

<u>Temperature Curve</u> Increase and decrease of object temperature during the cross-linking process in the furnace

Textures Surface formation of surface, rough and/or fine texture

TGIC (Triglycidyl isocyanurate) Hardener system for polyester powder used for many years (had to be identified as toxic since 1998)

<u>TGIC-free</u> Alternative hardeners to previously used TGIC (Primid, PT910, PU)

<u>Thermoplastic</u> Reversibly formable plastics can be liquefied and processed again when heated

<u>Thermosetting Plastics</u> Irreversibly cross-linked plastics, cannot be re-shaped by heating

<u>Tribo charge</u> Powder particles are positively charged via charge separation (PTFE rod or pipe) and transported to the object

<u>Trickle off</u> Powder fails to adhere to the workpiece: it falls/trickles off; see also snowboard effect

U

<u>Ultrasound Screen</u> Inserted for fresh and/or recycled powder coating when preparing the powder coating

<u>Use of Adhesives</u> Very broad spectrum, check for suitability prior to use

V

<u>Voltage</u> In this case: High voltage electricity needed for charging

<u>Wall Thickness</u> Thickness of workpiece material

Wetting

Adhesion of powder coating on workpiece, prerequisite for adequate adhesion; requires suitable pretreatment

Weld Points

Surface treatment, may be visible through powder coating film; problem with oil carbon, especially if processed with an angle grinder

Workpieces See Substrate

<u>Wrap-around</u> Powder coating build-up on the back of the workpiece

<u>Yellowing</u> Change in shade due temperature that is too high, retention time that is too long and/or furnace atmosphere in gas furnace with direct heat

Editor and Publisher TIGER Coatings GmbH & Co. KG | Negrellistraße 36 | 4600 Wels | Austria | T +43 / (0) 7242 / 400-0 E office@tiger-coatings.com | www.tiger-coatings.com

© 2019 by TIGER Coatings GmbH & Co. KG | All Rights Reserved

Proper use

This manual is intended to provide with the relevant reader and user with a tool to clarify major sources of errors in the individual application stages and to allow these error sources to be rectified as comprehensively as possible. Under these circumstances quoting from the relevant documents for your own needs is permitted. In these circumstances it is permissible to quote for one's own purposes from these documents.

All rights reserved

This document including all texts are protected by copyright. Any exploitation outside the narrow limits of the copyright law without prior consent of the authors is not permitted and subject to penalties. No part of this work, including its systematics and nomenclature, must be copied, reproduced, duplicated, translated, edited, modified, and electronically recorded in analog or digital form, stored, recovered, transmitted or in any other form distributed or exploited.

Rights in images

All rights reserved by the authors or their representatives.

Despite utmost diligence in creating this manual, we cannot assume liability for correctness of the information and potential errors.

TIGER WORLDWIDE NETWORK

current address and other information at www.tiger-coatings.com

ROUBI AROUBI MARINE STOOTIN